Population Genetics of Identity By Descent
نویسنده
چکیده
Population Genetics of Identity By Descent Pier Francesco Palamara Recent improvements in high-throughput genotyping and sequencing technologies have afforded the collection of massive, genome-wide datasets of DNA information from hundreds of thousands of individuals. These datasets, in turn, provide unprecedented opportunities to reconstruct the history of human populations and detect genotype-phenotype association. Recently developed computational methods can identify long-range chromosomal segments that are identical across samples, and have been transmitted from common ancestors that lived tens to hundreds of generations in the past. These segments reveal genealogical relationships that are typically unknown to the carrying individuals. In this work, we demonstrate that such identical-by-descent (IBD) segments are informative about a number of relevant population genetics features: they enable the inference of details about past population size fluctuations, migration events, and they carry the genomic signature of natural selection. We derive a mathematical model, based on coalescent theory, that allows for a quantitative description of IBD sharing across purportedly unrelated individuals, and develop inference procedures for the reconstruction of recent demographic events, where classical methodologies are statistically underpowered. We analyze IBD sharing in several contemporary human populations, including representative communities of the Jewish Diaspora, Kenyan Maasai samples, and individuals from several Dutch provinces, in all cases retrieving evidence of fine-scale demographic events from recent history. Finally, we expand the presented model to describe distributions for those sites in IBD shared segments that harbor mutation events, showing how these may be used for the inference of mutation rates in humans and other species.
منابع مشابه
Estimation of pairwise identity by descent from dense genetic marker data in a population sample of haplotypes.
I present a new approach for calculating probabilities of identity by descent for pairs of haplotypes. The approach is based on a joint hidden Markov model for haplotype frequencies and identity by descent (IBD). This model allows for linkage disequilibrium, and the method can be applied to very dense marker data. The method has high power for detecting IBD tracts of genetic length of 1 cM, wit...
متن کاملSensitivity of Inferences in Forensic Genetics to Assumptions about Founding Genes By
Many forensic genetics problems can be handled using structured systems of discrete variables, for which Bayesian networks offer an appealing practical modeling framework, and allow inferences to be computed by probability propagation methods. However, when standard assumptions are violated—for example, when allele frequencies are unknown, there is identity by descent or the population is heter...
متن کاملProbability of identity by descent in metapopulations.
Equilibrium probabilities of identity by descent (IBD), for pairs of genes within individuals, for genes between individuals within subpopulations, and for genes between subpopulations are calculated in metapopulation models with fixed or varying colony sizes. A continuous-time analog to the Moran model was used in either case. For fixed-colony size both propagule and migrant pool models were c...
متن کاملPLINK: a tool set for whole-genome association and population-based linkage analyses.
Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, ...
متن کاملNatural selection and the distribution of identity-by-descent in the human genome.
There has recently been considerable interest in detecting natural selection in the human genome. Selection will usually tend to increase identity-by-descent (IBD) among individuals in a population, and many methods for detecting recent and ongoing positive selection indirectly take advantage of this. In this article we show that excess IBD sharing is a general property of natural selection and...
متن کامل